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Application of Scattered Data Approximation to a
Rotorcraft Heath Monitoring Problem

Andrew J. Meade, Jr.*

William Marsh Rice University, Houston, Texas 77251-1892

An adaptive and matrix–free scheme has been developed for interpolating and
approximating sparse multi–dimensional scattered data and has been applied to a time-
series problem in rotorcraft. The Sequential Function Approximation (SFA) method is based
on a sequential Galerkin approach to artificial neural networks and requires neither ad–hoc
parameters for the user to tune, nor rescaling of the inputs. It is linear in storage with
respect to the number of samples. The SFA method has been used to model and extrapolate
the time series data from a critical temperature sensor in a 1/4 scale model of the V-22
Osprey. The SFA regression model, constructed with radial basis functions, has also been
used satisfactorily to evaluate the sensitivity to 74 system health and safety–of–flight
parameters during a series of wind–tunnel tests. An upper bound on the error convergence
rate that is exponential and does not explicitly depend on the dimensionality of the
approximation was derived and confirmed for the time series data.

Nomenclature
a = positive constant > 1
C = positive constant
cn = n–th linear coefficient in the approximation
d = input dimension
f = arbitrary function
f = vector of f evaluated at sample points
G = mapping function of Eq. (12)

gn = r(n-1) 

€ 

ξn
*( ) = value of component in vector r(n-1) with maximum magnitude

Hv (Rd) = Sobolev space
j* = component index of r(n-1) with the maximum magnitude
m = number of basis parameters
n = number of bases
R = real coordinate space
rn(

€ 

ξ ) = n–th stage of the function residual
rn = n–th stage function residual vector
s = number of samples
ti = i–th time level
u(

€ 

ξ ) = target function

€ 

un
a (ξ ) = n–th stage of the target function approximation

v = arbitrary function

€ 

f ,v = ∫ Ω fv dξ = inner product of f and v

€ 

f ,v D = Σi
s fivi( ) = discrete inner product of f and v

|f| = absolute value of f
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€ 

f 2 = ∫ Ω f 2dξ( )
1/ 2

= L2 norm of f

€ 

f 2,D = Σi
s ( fi )

2( )
1/ 2

= discrete L2 norm of f

Greek Symbols
αn = n–th linear coefficient of Eq. (3)

€ 

β = set of nonlinear optimization parameters
η = basis function argument

€ 

ξ = d–dimensional input of the target function

€ 

ξ i = i–th sample input of the target function

€ 

ξn
* = sample input with component index j* at the n–th stage

€ 

ξ i
(k) = k–th component of the sample input vector 

€ 

ξ i
σ = radial basis function parameter
φ = basis function
τ = user specified tolerance
Ω = domain of interest

Subscripts
i = dummy index
j* = component index of r(n-1) with the maximum magnitude
n = associated with the number of bases
s = associated with the number of samples

Superscripts
d = associated with the input dimension
m = associated with the number of basis parameters

1. Introduction
ITH the costs of testing facilities continuing to rise, rotorcraft experimentalists are increasingly faced with
conflicting requirements of efficiency and safety. In an ideal situation, the experimentalist has a priori

knowledge of test conditions that may cause safety problems such as high structural loads or overheating of critical
parts. Realistically, however, this knowledge is quite limited and therefore the test engineer will approach suspect or
new test conditions in a methodical matrix-like manner. This approach, while safe, can be inefficient. For example,
dozens of system health and safety-of-flight parameters must be monitored during testing of rotorcraft scale models.
Many of the drive train temperatures operate near redline limits and react differently to various test conditions. If it
were possible to model the behavior of critical system health values as a function of the test parameters, the test
engineer could map an approach to a particular test condition prior to the
start of the data run safely and efficiently.

To develop a health monitoring system (HMS) with this capability, a high-fidelity and easy to use tool is needed
to assemble and analyze databases of sparse and scattered data so important trends can be easily and quickly
identified. In this paper we introduce an adaptive and matrix-free scheme developed for interpolating and
approximating sparse multi-dimensional scattered data. The scheme requires neither ad-hoc parameters for the user
to tune, nor rescaling of the inputs. This has been applied to a time series regression problem in a HMS. The
Sequential Function Approximation (SFA) method1 is based on a sequential Galerkin approach to artificial neural
networks and is linear in storage with respect to the number of samples, s. The method is simple to program and
does not require selecting ad-hoc parameter values or rescaling of the inputs. The SFA approach and its
implementation will be discussed in Secs. 2.2 and 2.3. In Sec. 3 the SFA scheme will be used to model HMS time
histories from the temperature sensor of a critical component in a scale model of the V-22 Osprey, known as the Full
Span Tilt Rotor Aeroacoustic Model (FS-TRAM)2 illustrated in Fig. 1. The constructed SFA model will then be
evaluated to determine the sensitivity of the sensor readings to the 74 parameters that include rotor blade conditions
and temperatures, rotor speed, and fluid pressures throughout the FS-TRAM. Error bounds for the application are
derived and confirmed. Conclusions and future work are given in Sec. 4.

W
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Fig. 1 Full span tilt rotor aeroacoustic model: (a) configuration, (b) schematic.

2. Approach
In this section, the proposed method for matrix-free sequential function interpolation and approximation is

described and implemented for scattered multidimensional and real-valued data. Approximation by artificial neural
networks is discussed as well as optimization and basis functions.

2.1 Function Approximation in Artificial Neural Network Application
Any approximation algorithm that uses a combination of basis functions mapped into a graph-directed

representation can be called an artificial neural network. Function approximation in the framework of neural
computations has been based primarily on the results of Cybenko3 and Hornik et al.,4 who showed that a continuous
d-dimensional function can be arbitrarily well-approximated by a linear combination of one-dimensional functions
φ.

€ 

u ≈ un
a (ξ ) = c0 + ci

i=1

n

∑ φ η ξ ,β i( )( ) (1)

where 

€ 

η∈ R,ξ ∈ Rd ,β i ∈ Rm , and c i ∈ R represent the function argument, independent variables, function
parameters, and linear coefficients, respectively.

The appropriate linear and nonlinear network parameters in Eq. (1) are traditionally selected by solving a non-
linear optimization problem with the objective function given by the L2 norm of the error over some domain Ω

€ 

ε2 ≡ ∫ Ω u − un
a( )
2
dξ = u − un

a
2

2
(2)

In the neural network literature, the numerical minimization of Eq. (2) by a gradient descent procedure is known
as the backpropagation algorithm.5 More sophisticated optimization methods, including the conjugate gradient and
the Levenberg-Marquardt methods, have also been used for neural network training. However, it has been found that
even these advanced optimization methods are prone to poor convergence.6 Clearly, the training algorithms must
address a multidimensional optimization problem with non-linear dependence on the network parameters 

€ 

βi .
As an alternative, Jones7,8 and Barron9 proposed the following iterative algorithm for sequential approximation:

€ 

un
a ξ( ) =αnun−1

a ξ( ) + cnφ η ξ ,β n( )( ) (3)

where 

€ 

βn ,cn , and αn  are selected optimally at each iteration of the algorithm. As a result, the high-dimensional
optimization problem associated with neural network training is reduced to a series of simpler low-dimensional
problems. A general principle of statistics was utilized to show that the upper bound of the error ε is of the order

€ 

C / n , where C is a positive constant. Orr10 then introduced a forward selection method of sequential network
training, in effect a method of incremental function approximation. At each iteration of the algorithm an additional
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basis function producing the largest reduction of error in the previous iteration is chosen from a given set of
functions and added to the approximation. This forward selection training method can be inefficient as it may
require significant computational resources when the set of trial functions is large. A similar principle is utilized in
Platt's resource allocating networks (RAN).11 Whenever an unusual pattern is presented to the network in on- or off-
line network training a new computational “unit” is allocated. Note that these computational units respond to local
regions of the input space.

The concept of sequential approximation is one of the major features of the method proposed in this paper for the
solution of scattered data approximation problems.

2.2 The Proposed Method
The basic principles of the proposed computational method for solving scattered data approximation are

presented in this section. The development of this method was motivated by the similarities between iterative
optimization procedures reviewed in Sec. 2.1 and the Method of Weighted Residuals (MWR), specifically the
Galerkin method.12

To begin, we can write the function residual using the n-th stage of Eq. (1) as

€ 

r cn ,ξ ,βn( ) = rn = u ξ( ) − una ξ( ) = u n−1( )
a ξ( ) − cnφ η ξ ,β n( )( )  =

€ 

r n−1( ) − cnφ η ξ ,β n( )( ) = r n−1( ) − cnφn

Utilizing the Petrov-Galerkin approach, we select a cn that will force the function residual to be orthogonal to the
basis function,

€ 

rn ,φn = − rn ,
∂rn
∂cn

= −
1
2
∂ rn ,rn
∂cn

= 0  (3)

which is equivalent to selecting a value of cn that will minimize 

€ 

rn ,rn or

€ 

cn =
φn ,r(n−1)
φn ,φn

(4)

The values of our remaining variables 

€ 

β n( )  must minimize the same objective

€ 

rn ,rn = r n−1( ) ,r n−1( ) − 2cn φn ,r n−1( ) + cn
2 φn ,φn (5)

that can be rewritten with the substitution of Eq. (4) as

€ 

rn ,rn = r n−1( ) ,r n−1( ) 1−
φn ,r n−1( )

2

φn ,φn r n−1( ) ,r n−1( )

 

 

 
 
 

 

 

 
 
 

(6)

Recalling the definition of the cosine using arbitrary functions f and v,

€ 

cos θ( ) =
f ,v

f , f 1/ 2 v,v 1/ 2

and the equivalence between the inner product and the square of the L2 norm, Eq. (6) can be written as

€ 

rn 2 = r n−1( ) 2
sin θn( ) (7)
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where θn is the angle between φn and r (n-1). With Eq. (7) 

€ 

rn 2 < r n−1( ) 2
as long as φn is not orthogonal to the

previous equation residual r(n-1) that is, θn ≠ π/2. By inspection the minimum of Eq. (7) is

€ 

cnφn = cnφ η ξ ,β n( )( ) = r n−1( )

Therefore, to force 

€ 

rn 2 → 0  a low-dimensional function approximation problem must be solved at each stage n.

This involves an unconstrained nonlinear optimization in the determination 

€ 

βn . The dimensionality of the nonlinear
optimization problem is kept low since we are solving for only one basis at a time. There are no theoretical
restrictions on the type and distribution of local basis functions. Both B1-splines13,14 and Gaussian tensors15 have
been used with Eq. (7) using equation residuals in the solution of ordinary and partial differential equations. These
popular bases should be available for use in scattered data approximation since Ref. 16 demonstrated that
approximating functions through the solution of differential equations was a more stringent test of bases than
straight-forward function approximation. There are neither ad-hoc parameters for the user to tune, nor rescaling of
the inputs in the method. The algorithm can be initialized with either an empty set (r0 = u) or an arbitrary number of
predetermined functions and coefficients. The second option enables the use of solutions from previous numerical
analyses.

2.3 Implementation of the Algorithm
In the scattered data approximation we have only discrete samplings of the observed function 

€ 

u ξ( ) . Given a

finite number of samples s , we can write 

€ 

r n−1( ) = r n−1( ) ξ1( ),...,r n−1( ) ξ s( ){ }  and 

€ 

φn = φn ξ1( ),...,φn ξ s( ){ } . The

equations derived in Sec. 2.2 are directly applicable if we use the discrete inner product.
The choice of bases plays a major role in the efficiency and utility of the scattered data approximation algorithm

as a whole. We chose normalized bell-shaped bases. Radial basis functions (RBF) were used in the modeling of the

time series data from a critical temperature sensor. Defining 

€ 

ξn
*  such that 

€ 

r n−1( ) ξ n
*( ) = max r n−1( ) , then

€ 

βn = ξn
* ,σ n{ } where

€ 

φ η ξ ,βn( )( ) =φn ξ( ) = exp −σ n
2 ξ −ξ n

*( ) ⋅ ξ −ξ n*( ) 
 
  

 
 

Though the functional form of the SFA scheme allows the basis center to be located anywhere in Rd, the application
to scattered data approximation constrains the centers to the set of sample points 

€ 

ξ1,...,ξ s{ } , The remaining

optimization variable σn is continuous and unconstrained.
Numerical experiments show that the discrete inner product formulation of Eq. (6) has a number of local minima

with respect to σ n. This results in an unsatisfactory convergence rate when using common gradient-based
optimization methods. These experiments resulted in the two-step formulation used for this paper which is a
combination of Eqs. (4) and (5).

€ 

  σ n

min r n−1( ) ,r n−1( ) D
− 2gn φn ,r n−1( ) D

+ gn
2 φn ,φn D

 
 
 

 
 
 (8)

€ 

cn =
φn ,r n−1( ) D
φn ,φn D

(9)

where 

€ 

gn = r n−1( ) ξ n
*( ) . This is the form of the SFA algorithm used in the modeling of the time series from a critical

temperature sensor. Note that by using the scalar gn with a normalized bell-shaped basis function centered at 

€ 

ξn
*  that

max 

€ 

rn < max r n−1( )  while at the same time the minimization of Eq. (8) and satisfaction of Eq. (9) ensures that
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€ 

rn ,rn D < r n−1( ) ,r n−1( ) D
. When using RBFs in this implementation of the SFA method the basis parameter σn

should vary as Can/v . Then, as per the results of Ref. 16, the upper bound of the residual should be

€ 

rn ,rn D = rn 2,D<Ca−n (10)

where 

€ 

u ξ( )  is from the space Hv(Rd). In this implementation, Eq. (10) indicates that we should observe exponential

convergence that does not depend explicitly on the dimensionality of the approximation. It sidesteps the “curse of
dimensionality”.8 Together Eqs. (8) and (9) make up the SFA algorithm used in the HMS time series regression
problem.

The two more popular scattered data approximation methods using RBFs in the literature are RBF neural
networks and Support Vector Machines (SVM). RBF neural networks usually consist of a single hidden layer whose
number of transfer functions, n, are chosen through trial and error by the user. The nonlinear parameters of the
hidden layer are determined simultaneously through optimization and the output parameters are solved by the
inversion of an n x n matrix, where n < s. RBF neural networks, besides requiring on the order of n2 memory and
time resources, are also strongly susceptible to problems of dimensionality.17 Support Vector Machines on the other
hand are very attractive for high-dimensional regression since the complexity of the approximation depends only on
the number of support vectors and is independent of the dimensions of the input d (Ref. 18). However, SVMs
require user tuned ad-hoc parameters and on the order of s2 memory and time resources.19

The scattered data approximation scheme presented in this paper is free of matrix construction and evaluations
and is only of order s in storage. Computational cost is reduced while efficiency is enhanced by the low-dimensional
unconstrained optimization. Theoretically, the method should be applicable to a number of popular local
interpolation functions and should, with the use of RBFs, sidestep the limitations due to dimensionality. The scheme
does not require user interaction other than setting the tolerance for termination; the computer does the work. To
implement the algorithm the user takes the following steps:

1) Initiate the algorithm with 

€ 

r0 = u ξ1( ),...,u ξ s( ){ } .

2) Search the components of r(n-1) for the maximum magnitude. Record the component index j*.

3) 

€ 

ξn
* = ξ j*.

4) Satisfy Eq. (8) with φn centered at 

€ 

ξ j* and initialize the optimization parameter with σn = 0.

5) Calculate the coefficient cn from Eq. (9).

6) Update the residual vector 

€ 

rn = r n−1( ) − cnφn . Repeat cycle until termination criteria have been met.

A combination of three criteria can be used to terminate the SFA algorithm: 

€ 

rn 2,D , or 

€ 

gn  falls below a user

specified tolerance (τ) or the number of bases n exceeds the user specified maximum. In this paper we terminate the
calculations when either 

€ 

gn <τ or 

€ 

n> s.
The method is linear in storage with respect to s since it needs to store only s+1 vectors to compute the residuals:

one vector of length s (rn) and s vectors of length d 

€ 

ξ1,...ξ s( ) . To generate the SFA model requires one vector of

length n ({c1,…,cn}) and n vectors of length n+1 (β1,…, βn).
A drawback found in using Eqs. (8) and (9) in practice is its sensitivity to the initial value of σn. Though Eq. (6)

is stable, numerical experiments have shown that some initial values of σn cause local extrema in the formulations of
Eqs. (8) and (9) to be selected such that cn→ 0 while gn is finite. Problems are not experienced with the SFA scheme
if we initialize with σn = 0.

Lastly, since the SFA scheme works with the L2 norm, time-dependent processes must be reformulated as a
mapping of inputs to desired outputs. The temperature variations measured by the FS-TRAM target sensors is a heat
transfer problem and should be governed by a system of unknown nonlinear time-dependent partial differential
equations. Assume the inputs are sequential in time, or 

€ 

ξ i  is recorded at ti where ti < ti+1. Limiting our attention to a
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single target sensor, we can use the Runge-Kutta temporal integration technique from the finite difference
literature20 to write

€ 

u t i+1( ) = u t i( ) + t i+1 − t i( ) G ξ i ,u t
i( ), t i 

 
  

 
 (11)

where G is unknown. If the input vector 

€ 

ξ i  includes u(ti) as well as ti, and if ti+1-ti is roughly constant for all i, then
Eq. (11) can be rewritten as

€ 

u t i+1( ) =G ξ i( ) (12)

since G is still an unknown function. Therefore, with the sets 

€ 

u t1( ),⋅ ⋅ ⋅,u t s( ){ }and 

€ 

ξ1,⋅ ⋅ ⋅,ξ s{ }  we can use the SFA

scheme to construct the mapping function G sequentially.

3. Results
Results are presented, compared, and discussed to demonstrate the utility of the SFA scattered data

approximation approach in health monitoring. We applied the method to data acquired by the FS-TRAM HMS
during eight test runs in NASA Ames Research Center's 80 x 120 ft wind-tunnel. The FS-TRAM HMS is a real-time
monitoring and data acquisition system that tracks various fluid pressures and temperatures from numerous model
components including the conversion axis, swashplate, static mast bearing, centerline gearbox, and nacelle
transmissions. During a test run, if any component reaches thermal limits or exhibits unusual gradients, necessary
modifications are made to the test plan that may include the premature cancellation of the run.

The results of this paper were chosen assuming the safety and test engineers have laid out a detailed
experimental test plan beforehand and want to determine how to delay or eliminate redline conditions during the
run. To develop a HMS with this capability the SFA method that augments it should

1) interpolate data scattered over the range of system health and safety-of-flight parameters accurately using a
minimum number of basis functions and with as little user interaction as possible,

2) test the scattered data approximation for input parameter sensitivity so that necessary modifications can be made
to the test plan to avoid the thermal limits,

3) use the sensitivity results to eliminate the need to sample certain test parameters in future test runs (i.e. develop a
reduced model), and

4) predict the values of critical sensors so as to provide advanced warning on redline conditions.

The mapping of 74 experimental test and system health parameters (Figs. 2-4) at time ti to the right swashplate
bearing J-type temperature sensor (number 4 of Fig. 5) at time ti+1 is investigated using the SFA algorithm. We
selected the data from eight FS-TRAM test runs (Fig. 6) that vary the fuselage angle of attack (-9°– 11°), rotor shaft
angle (0 °– 14° from vertical), the presence of nacelle fairings, and wind-tunnel speeds. The HMS recorded the FS-
TRAM system health parameters approximately every 30 seconds from 0 to a maximum of 116 minutes. These tests
were conducted over a number of days producing a total of 1607 test samples. As mentioned in Sec. 2.3, a
combination of three criteria can be used to terminate the calculation. In this paper we terminated the computer code
when either 

€ 

gn <τ or 

€ 

n> s. Since the J-type temperature sensors used in the FS-TRAM experiment were accurate

to only 

€ 

±2°F, we set τ = 2 with s = 1607. For the purpose of display clarity, the temperature predictions are
represented as curves in some of the figures rather than data points. This does not imply a functional relationship
between adjoining samples. A measure of the SFA model's sensitivity relative to the input parameters was
determined by summing the squares of the partial derivatives of each of the inputs over all the test samples, i.e.,
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sensitivity to input index k =

€ 
€ 

i=1

s

∑

€ 

∂un
a ξ( )

∂ξ k( )
ξ =ξ i

 

 

 
  

 

 

 
  

2

=

€ 

4
i=1

s

∑

€ 

j=1

n

∑ c jσ j
2 ξ i

k( ) −ξ j*
k( ) 

 
  

 
 φ j ξ i( )

 

 

 
 

 

 

 
 

2

(13)

The SFA algorithm was encoded as a Matlab program and all calculations were made on a Dell GX260 personal
computer with a 2 GHz processor. We selected the trust-region based nonlinear optimization routine (fminunc) to
calculate σn.

(a) (b)

Fig. 2 Location of input sensors: (a) fuselage, (b) right nacelle. Sensors in the left nacelle not shown.

3.1 Time Series Model
Figure 7 illustrates the SFA time series approximation, error, convergence rate, and sensitivity ranking for the

temperature sensor of our critical part over the eight test runs. Evaluation of the approximation parameters required
260 seconds in wall clock time. The right swashplate rolling-element bearing is considered the most mechanically
critical part of the FS-TRAM model of the five that were monitored during the experiment. The swashplate transfers
linear actuator motion to cyclic and collective control of the rotor blades with the rotating rotor shaft running
through its center. The swashplate bearing supports the rotating section. As the bearing surface deteriorates in the
rotating section, the resulting increase in friction will cause a notable increase in the bearing body temperature
which can be monitored by the HMS. If the temperature exceeds the set redline value the swashplate bearing could
cause immediate loss of the rotor pitch/collective controls which in turn could result in a catastrophic rotor system
failure and the loss of the model.
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Fig. 3 Temperature sensor inputs. Input indices 1-36.

The right and left swashplate assemblies are exposed to outside airflow during the experiment which may
explain why the temperature of the right bearing reaches only up to only 115°F as shown in Fig. 7a while other FS-
TRAM components can easily exceed 230°F. Figure 7a also illustrates the temperature variations caused by the
changes in rotor speed and the cyclic and collective settings. The errors shown in Fig. 7b are caused by the plateaus
in the temperature curve since sensor readings that vary less than 

€ 

±2°F were approximated as a single value.
Because the convergence rate of Fig. 7 and the remaining figures in this paper follow or exceed that given in Eq.
(10), the results are considered satisfactory since they show that the SFA time series approximation can be
constructed accurately using the optimum number of bases. The sensitivity plot of Fig. 7d indicates that this sensor
signal is overwhelmingly sensitive to rotor speed (input index 28) as expected, followed by the right slip-ring
temperature (input index 43) and temperatures of nearby bearings and the elapsed time (input index 1). The
proximity of other bearings inside the same component may explain the sensitivity of the right swashplate
temperature to those sensors though it is unknown why the sensitivity to the left pitch case temperature (input index
20) should be present. It is possible this data channel may have been mislabled.

3.2 Model Reduction
In an effort to show the insensitivity of the SFA approximation to the majority of input indices, the input values

for all samples were reset to zero with the exception of 14 of the most sensitive inputs: indices 1, 3, 4, 5, 20, 28, 29,
31, 32, 35, 46, 51, 55, and 56. The SFA algorithm was then used to map this sparse set of parameters to the critical
component sensor readings. Figure 8 illustrates the temperature approximation, error, convergence rate, and
sensitivity ranking again using a maximum residual of 2.0 with 1607 samples. Evaluation of the approximation
parameters required 266 seconds. When comparing Figs. 7d and 8d it is apparent that the sensitivities of the majority
of indices are zero as expected, but the relative rankings of the 14 most sensitive parameters are unchanged as are
the convergence rates. Figure 8d confirms that the insensitivities of Fig. 7d are not just artifacts of the SFA method
and that it is possible to reduce the complexity of the SFA model.
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Fig. 4 Temperature sensor inputs. Input indices 37-74.

Fig. 5 Location of critical temperature sensors.
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Fig. 6 FS-TRAM test run summary.

Fig. 7 SFA time series model of the critical sensor using 1296 bases for 74 inputs: (a) predicted temperature,
(b) prediction error, (c) convergence rate of the residual, (d) input sensitivity.

3.3 Model Extrapolation
As previously mentioned, we believe one of the greatest needs of the test and safety engineers is a method for

predicting the values of critical sensors so advance warning on redline conditions can be given. However,
extrapolation is the most challenging test for any scattered data approximation scheme. Though Poggio and Girosi21

have shown that RBFs can approximate arbitrarily well any continuous function, accurate extrapolation by data
alone (a ``black-box mode'') depends on the sufficient quantity and quality of data. If either of these conditions are
not satisfied, extrapolation may still be possible with the proper incorporation of expert knowledge and/or
combination with physics-based models through regularization.22

Figure 9 is an attempt to extrapolate the mapping constructed using the 74 inputs and data from all the test runs
with the exception of Run 201. Evaluation of the approximation parameters required 251 seconds. After
consultations with the FS-TRAM engineers it was determined an extrapolation with an error less than 5°F would be
satisfactory. Unfortunately, as Fig. 9b shows, our extrapolation error for Run 201 immediately exceeds 28°F. This
poor performance seems to be primarily caused by the overwhelming dependence of the SFA model on the rotor
speed within the training domain. The abrupt change in rotor speed between sample indices 244 and 265 of Run 201
(Fig. 9c) also affected the extrapolation of the sensor model (Fig. 9a). The sensitivity rankings shown in Fig. 9d are
identical to those of Fig 7d. The extrapolation results using the 14 most sensitive inputs of Sec. 3.2 are not shown
since they are identical to Fig. 9.
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Fig. 8 SFA time series model of the critical sensor using 1326 bases for the 14 most sensitive inputs: (a)
predicted temperature, (b) prediction error, (c) convergence rate of the residual, (d) input sensitivity.

It was the opinion of the FS-TRAM engineers that the sensitivities given in Fig. 9d were not necessarily valid for
similar experimental test runs performed previously. From their observations the overall results were more
dependent on input indices 1, 29, 35, 51-53, 62-67, 69, and 70. The test engineers based their recommended inputs
on observations from many more experiments than those supplied to the author. In an attempt to incorporate this
expert knowledge, Fig. 10 shows the extrapolation results using the 14 recommended inputs. Evaluation of the
approximation parameters required 136 seconds. The performance is qualitatively satisfactory with an error less than

€ 

±10°F, though still insufficient for the purpose of health monitoring.

Fig. 9 SFA time series extrapolation of the critical sensor for Run 201; 1015 bases were used for 74 inputs: (a)
predicted temperature, (b) prediction error, (c) rotor speed, (d) input sensitivity.

Figures 9 and 10 illustrate the problem central to extrapolation in black-box mode; the mapping can only be
constructed with available data. Equation (13) used to measure the relative sensitivity, is a gross measure since it is
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summed over all of the available data sets. As more data sets are added it is possible for the sensitivity measures to
change. This may explain why the ranking of our sensitivity measures do not match those observed by the FS-
TRAM engineers who have access to more data sets than those used in this study. Though our black-box mode of
extrapolation using the available data failed, the tool can still be useful in helping the engineer iteratively select
physics-based models for further attempts at extrapolation. For example, in an actual FS-TRAM experiment the
engineer could take part of the available data and test the extrapolation against the remaining data in black-box
mode. With unsatisfactory results, the engineer could then take the rankings of the sensitivity measures and select
appropriate physics-based models to incorporate in the next extrapolation attempt. In future work we will
incorporate a mathematical model of the heat transferred from the right nacelle transmission to the right swashplate
bearing temperature sensor.

Fig. 10 SFA time series extrapolation of the critical sensor for Run 201; 788 bases were used for 14
recommended inputs: (a) predicted temperatures, (b) prediction error, (c) rotor speed, (d) input sensitivity.

4. Conclusions
An adaptive and matrix-free scheme has been developed for interpolating and approximating sparse multi-

dimensional scattered data. The scheme requires neither ad-hoc parameters for the user to tune, nor rescaling of the
inputs. This has been applied to a time series problem in a rotorcraft health monitoring system acquiring data from a
scale model of the V-22 Osprey. The SFA method is based on a sequential Galerkin approach to artificial neural
networks and is linear in storage with respect to the number of samples, s. Using this method an accurate
approximation is built by incremental additions of optimal local basis functions. Matrix construction and evaluations
are avoided. Computational cost is reduced while efficiency is enhanced by the low-dimensional unconstrained
optimization. Theoretically, the method should be applicable to a number of popular local basis functions.

The SFA method has been used to model the time series data from the right swashplate bearing J-type
temperature sensor recorded by the FS-TRAM HMS as a function of 74 system health parameters. We applied the
method to data acquired by the FS-TRAM HMS from 8 test runs in NASA Ames Research Center's 80 x 120 ft
wind-tunnel. The constructed SFA regression model using radial basis functions has been used satisfactorily to
evaluate the sensitivity of the temperature time series from the critical sensor to the 74 system health parameters.
Exponential convergence that sidesteps the ``curse of dimensionality'' was demonstrated for the temperature time
series data used in the analysis.

Using the same data, we also constructed a SFA model using data from 7 test runs and extrapolated the model to
approximate the remaining test run. The extrapolation results in black-box mode were unsatisfactory and only
partially successful with the use of expert knowledge, which would probably not be available a priori. Future work
will investigate improving the extrapolation by merging mathematical models with the experimental data through
regularization. Future investigations will also include more sophisticated optimization routines, the reformulation of
Eqs. (8) and (9) to decrease their sensitivity to initial values of σn and the use of various basis functions such as low-
order polynomials, B-splines, and Gaussian tensors.
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